6ª Edición de la Escuela de Verano de Ecología de Navarra: Cambio Global y Paisajes Resilientes

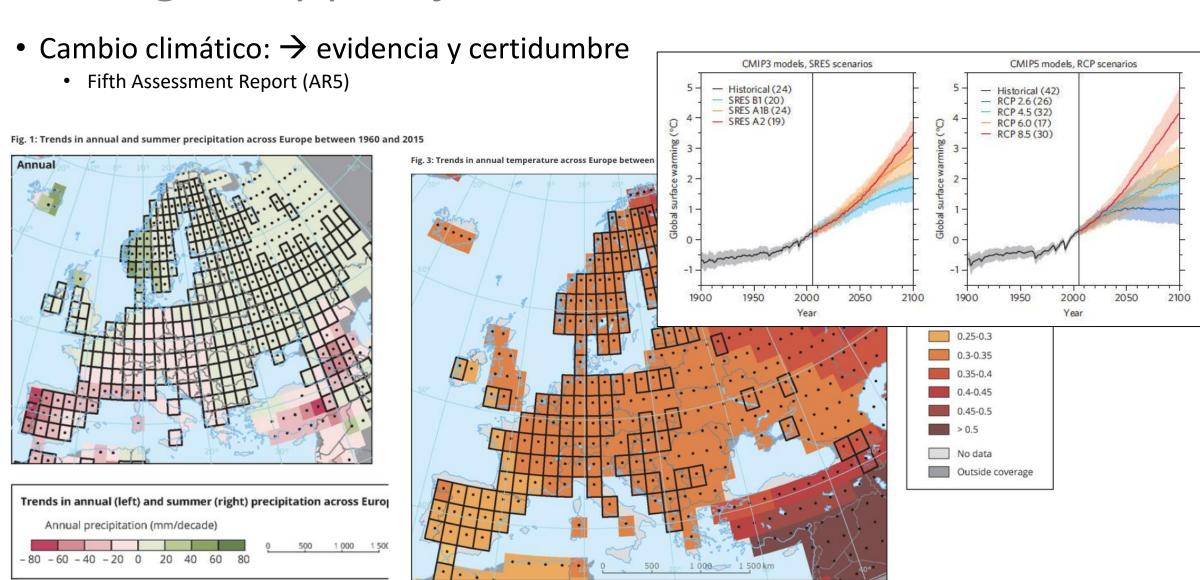
07 - 09 SEPTIEMBRE

Red española de Selvicultura adaptativa al cambio climático (SilvAdapt.net): hacia una selvicultura de procesos

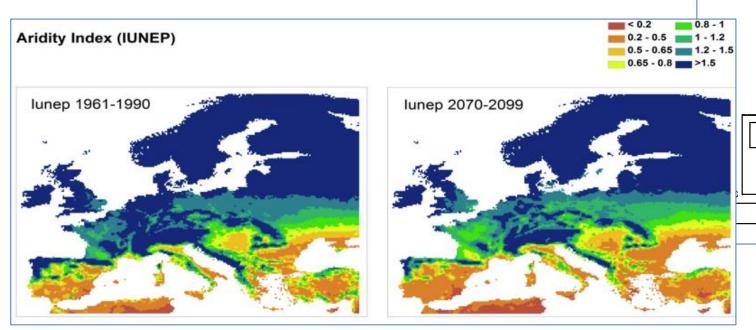
Dr. Antonio D. del Campo (U.P.V.)

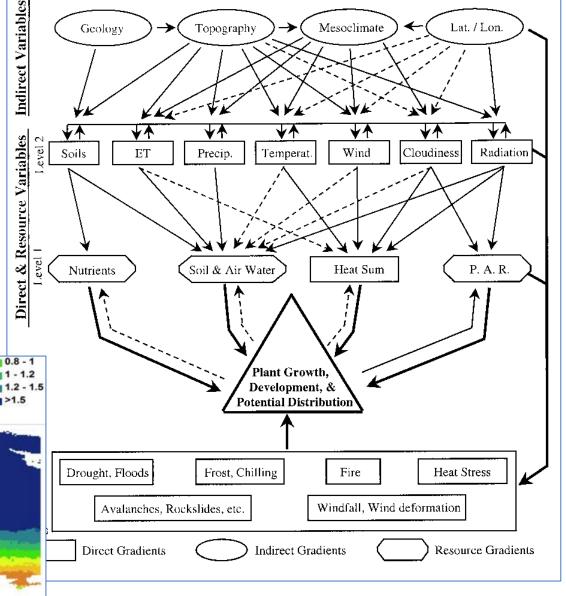
Grupo I+D Ciencia y Tecnología Forestal Re-ForeST

antdelcampo@gmail.com ancamga@upv.es


SilvAdapt.net:

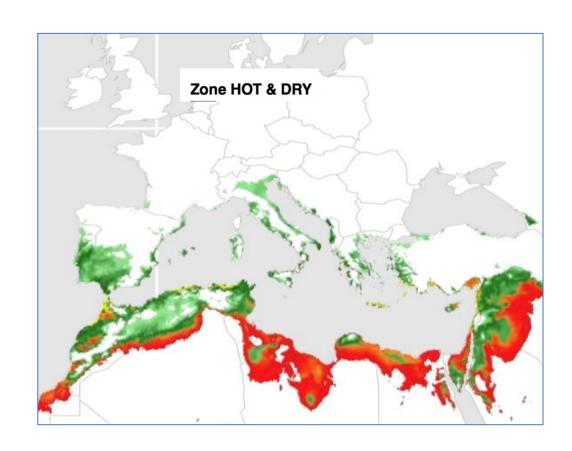
- Antecedentes
 - Cambio global y ¿paisajes resilientes?
 - Margen de acción para la selvicultura
 - Procesos y rasgos funcionales claves para una selvicultura adaptativa
- SilvAdapt.net:
 - Objetivo
 - Integrantes
 - Representación (bio)geográfica
 - Selvicultura y sistemas selvícolas
 - Grupos de trabajo
 - Hitos 2020-2021

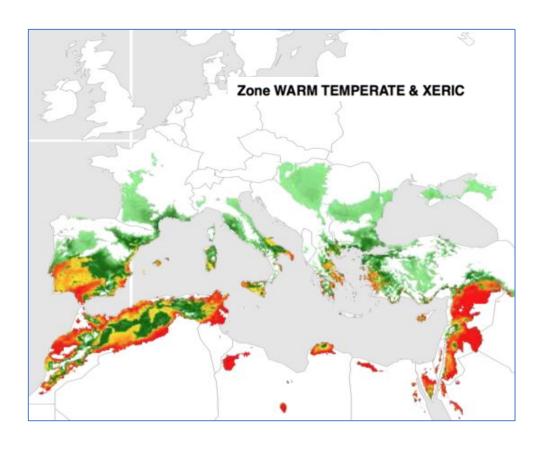



Cambio global y paisajes resilientes

Cambio global y paisajes resilientes

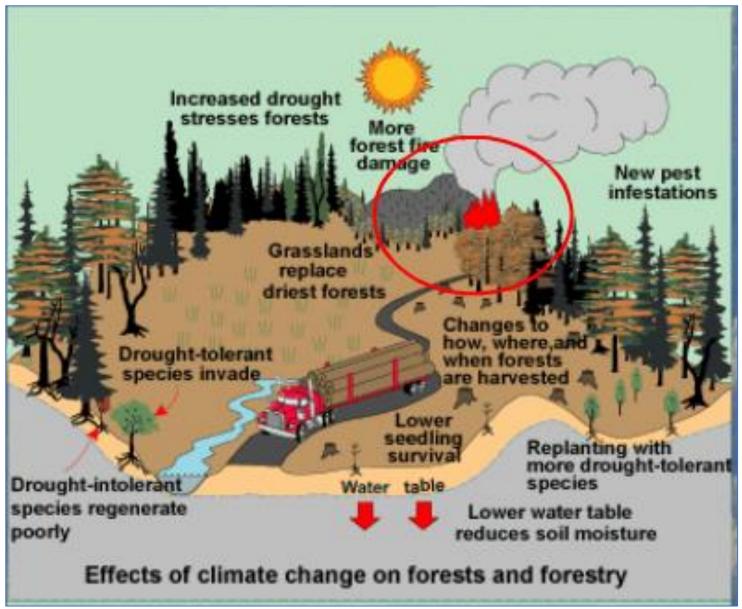
- - Precipitación estival/periodo vegetativo
 - Duración del period seco
 - Evapotranspiración, etc.





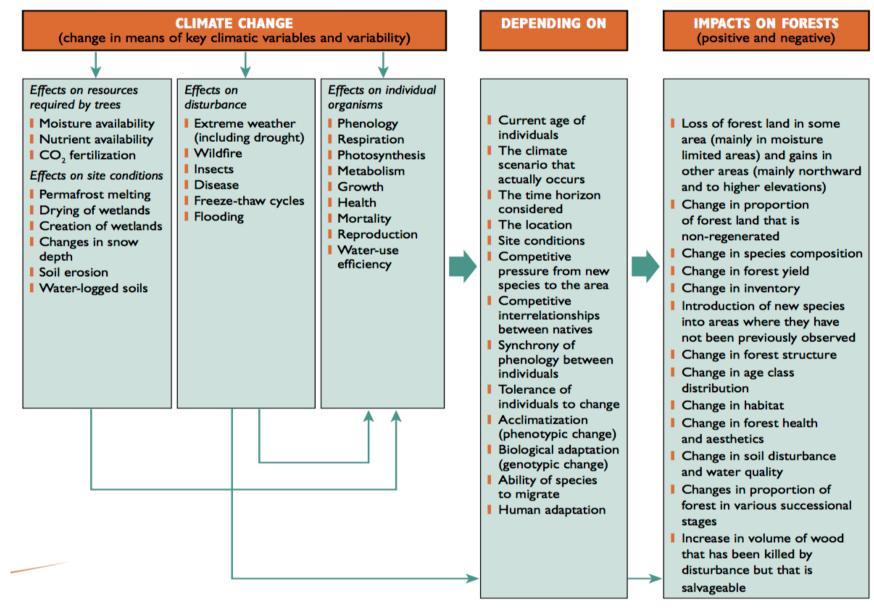
Cambio global y paisajes resilientes

- -> Cambios zonas biogeográficas para mitad de s XXI
 - Soteriades et al 2017 Environ. Res. Lett. 12 084002



Cambio global y ¿paisajes resilientes?

 Impactos potenciales en los bosques: El mismo estrés de siempre, pero a peor ...



Cambio global y ¿paisajes resilientes?

- Impactos en los bosques:
- → No es una relación causa-efecto

Johnston, Mark H. Et al , 2009. Vulnerability of Canada's Tree Species to Climate Change and Management Options for Adaptation: An Overview for Policy Makers and Practitioners. Canadian Council of Forest Ministers

FIGURE 2. A map of climate change impacts on forests. (Source: Williamson et al. 2009 – reprinted with permission)

Cambio global y ¿paisajes resilientes?

(Reyer et al., 2013)

- La trasposición de cambio en clima a cambios en la estructura y funciones de los ecosistemas forestales no es directa (Lindner et al., 2014) por:
 - (i) la incertidumbre inherente en la regionalización,
 → clima local → decisiones de gestión;
 - (ii) la **falta de linealidad en las respuestas** del bosque a cambios en variables climáticas (T, P, ..) → precisas variables con > significado fisiológico
 - (iii) > importancia en la respuesta respecto a cambios en extremos que en valores medios
 - (iv) la respuesta diferencial de distintos
 taxones/genotipos y según tamaño y etapa vital.

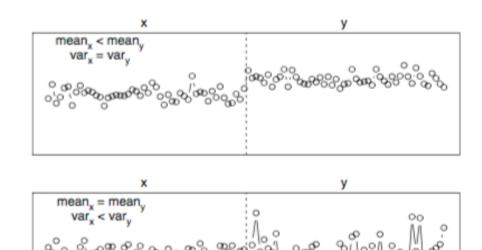


Fig. 1 The two theoretical cases of changing climatic drivers: (1) changes in the mean but not the variance (upper panel), (2) changes in the variance, but not the mean of a variable

Selvicultura adaptativa

- Gestión forestal (o selvicultura) adaptativa →
 - fin de **preservar o mejorar los SS.EE.** de los bosques en un contexto de cambio climático
 - adaptar los bosques a las nuevas condiciones ambientales o, especialmente, **mejorar** la resiliencia a regímenes de perturbaciones cambiantes (Seidl et al., 2016).
- Fuerte base adaptativa en contraposición a la selv. tradicional
- Debe nutrirse de
 - un abanico de nuevos criterios sensibles a los impactos/respuesta de los bosques
 - de **experiencias** reales que aporten datos complementarios para un correcto diagnóstico.
- Iniciativas varias por ej. la del US Forest Service (Millar et al., 2007; Nagel et al., 2017)

Algunas estrategias de S.A. (USDA, 2016):

- Sustain fundamental ecological functions
- 2 Reduce the impact of biological stressors
- Reduce the risk and long-term impacts of severe disturbances
- 4 Maintain or create refugia
- Maintain and enhance species and structural diversity
- 6 Increase ecosystem redundancy across the landscape
- 7 Promote landscape connectivity
- 8 Maintain and enhance genetic diversity
- 9 Facilitate community adjustments through species transitions
- 10 Realign following severe disturbance

Selvicultura adaptativa: margen de acción

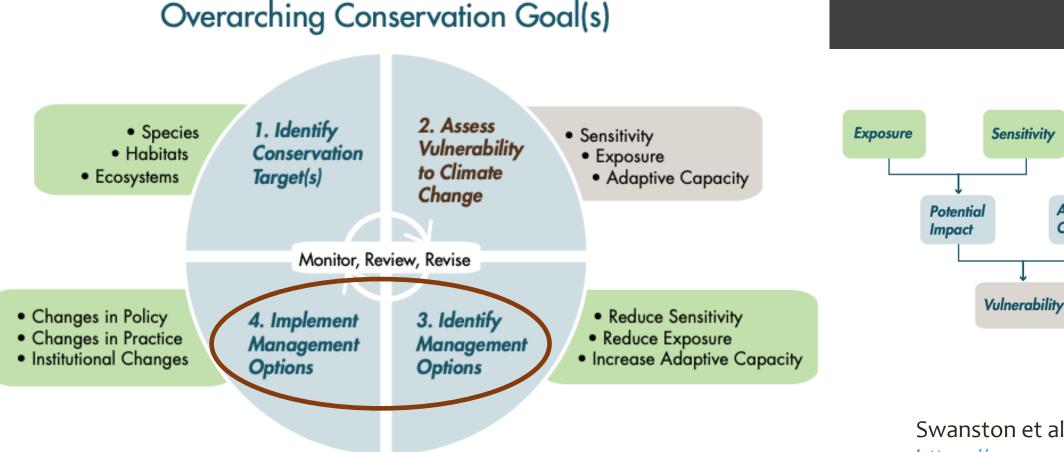
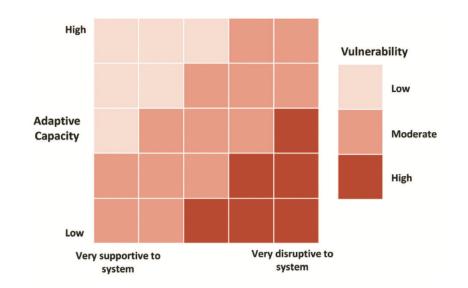
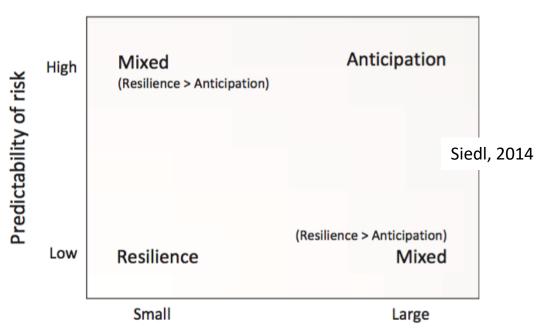


Figure 1.1. Framework for Developing Climate Change Adaptation Strategies

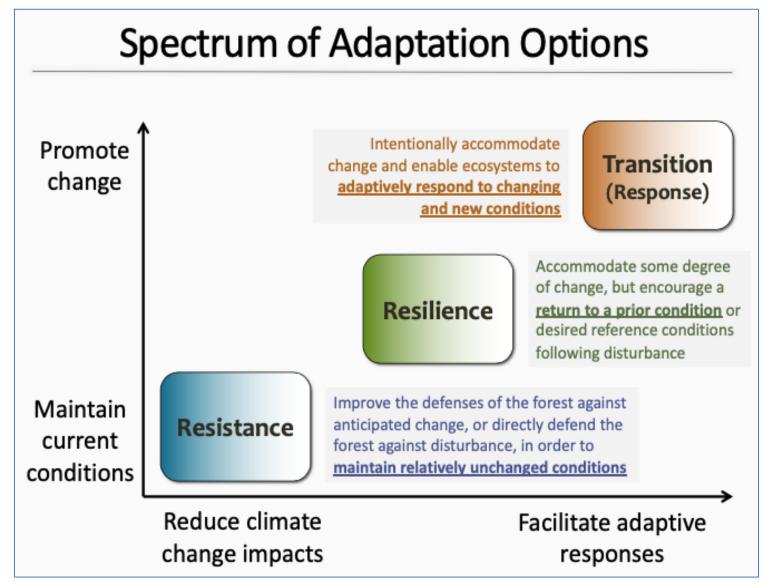

Swanston et al. 2016 https://www.nrs.fs.fe d.us/pubs/52760

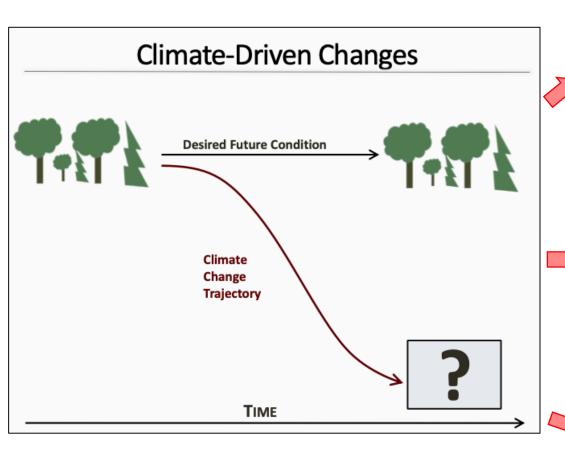

Adaptive

Capacity

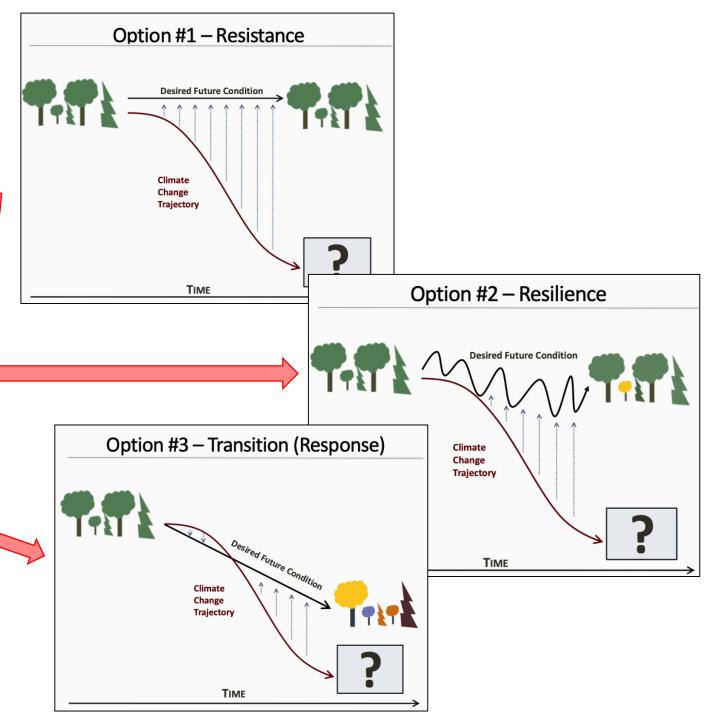
Selvicultura adaptativa: opciones

- De la vulnerabilidad,
 - → Selvicultura adaptativa reactiva frente a proactiva (Lindner et al 2014)
 - → Anticipar y mitigar riesgos frente a fomentar la resiliencia del bosque (Siedl, 2014).
- extremos de un continuo que va desde la poca o nula percepción de daños en el bosque hasta la presencia de impactos muy severos con mortalidad en pie de centenares de hectáreas.

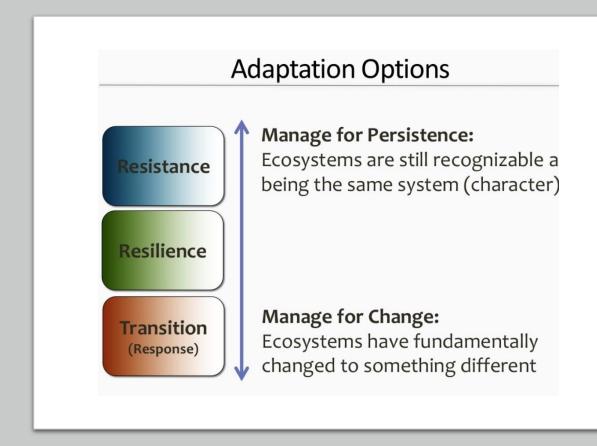


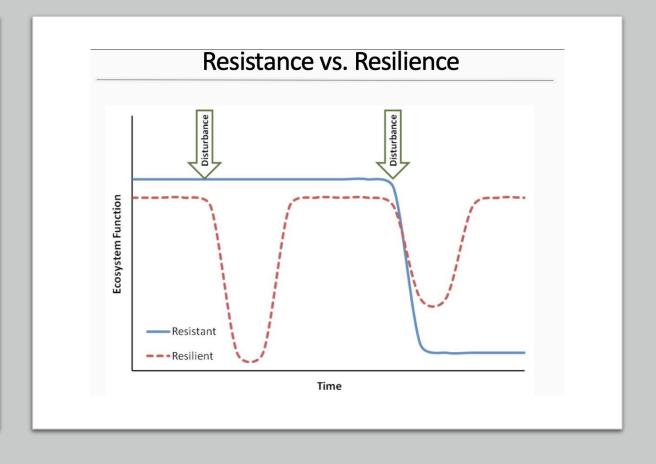


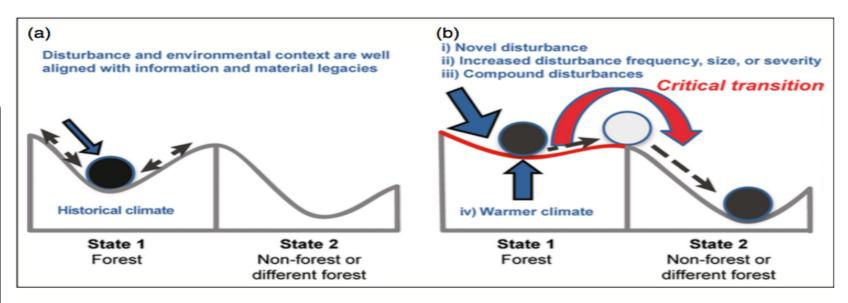
Amount of knowledge of what to do


Selvicultura: margen de acción

- Vulnerabilidad → marco de opciones de S.A. → cambios en estructura y funciones a inducir en la masa:
 - Tratamientos de resistencia: acciones que mejoran la defensa del bosque frente al cambio y las perturbaciones tratando de mantener condiciones relativamente inalteradas.
 - Tratamientos de resiliencia: acciones que persiguen un cierto grado de cambio, pero permiten el retorno a una condición previa o de referencia después de una perturbación.
 - Tratamientos de transición: acciones que intencionalmente acomodan y facilitan el cambio y permiten que los ecosistemas respondan de manera adaptativa a las condiciones cambiantes y nuevas.
 - Sin tratamiento: respuesta intrínseca del ecosistema forestal al cambio en ausencia de una selvicultura directa.




Peterson & Nagel, 2018. The Adaptive Silviculture For Climate Change (ASCC) Project A Scientist-manager National Network. Meeting Spring Green, WI. SlideShare.


Selvicultura: margen de acción

Peterson & Nagel, 2018. The Adaptive Silviculture For Climate Change (ASCC) Project. A Scientist-manager National Network. Meeting Spring Green, WI. SlideShare.

Dominios de estabilidad

Figure 2. Conceptual representation of forest ecosystems (black ball) within a theoretical landscape of alternative ecosystem states (valleys separated by peaks). (a) Forests are resilient to disturbances lying within the safe operating space, indicated by disturbances that may move the system but not cause it to shift to another state. (b) Forests are likely to shift to a different state in response to four hypothesized mechanisms (i—iv) that move a system outside its safe operating space and trigger a shift to a different forest or non-forest state.

Johnstone et al., 2016.

Menu of Adaptation Strategies and Approaches

Strategy 1: Sustain fundamental ecological functions.

- 1.1. Reduce impacts to soils and nutrient cycling.
- 1.2. Maintain or restore hydrology.
- 1.3. Maintain or restore riparian areas.
- 1.4. Reduce competition for moisture, nutrients, and light.
- 1.5. Restore or maintain fire in fire-adapted ecosystems.

Strategy 2: Reduce the impact of biological stressors.

- 2.1. Maintain or improve the ability of forests to resist pests and pathogens.
- 2.2. Prevent the introduction and establishment of invasive plant species and remove existing invasive species.
- 2.3. Manage herbivory to promote regeneration of desired species.

Strategy 3: Reduce the risk and long-term impacts of severe disturbances.

- 3.1. Alter forest structure or composition to reduce risk or severity of wildfire.
- 3.2. Establish fuelbreaks to slow the spread of catastrophic fire.
- 3.3. Alter forest structure to reduce severity or extent of wind and ice damage.
- 3.4. Promptly revegetate sites after disturbance.

Strategy 4: Maintain or create refugia.

- 4.1. Prioritize and maintain unique sites.
- 4.2. Prioritize and maintain sensitive or at-risk species or communities.
- 4.3. Establish artificial reserves for at-risk and displaced species.

Strategy 5: Maintain and enhance species and structural diversity.

- 5.1. Promote diverse age classes.
- 5.2. Maintain and restore diversity of native species.
- 5.3. Retain biological legacies.
- 5.4. Establish reserves to maintain ecosystem diversity.

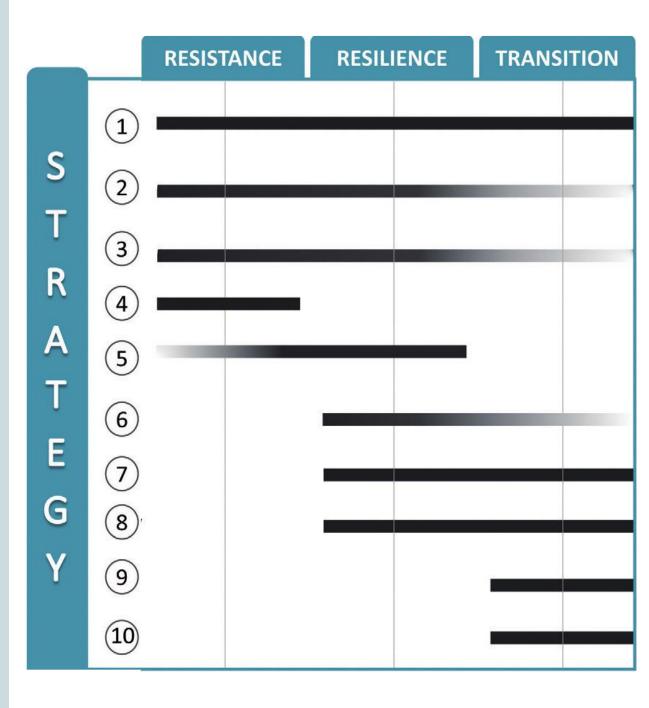
Strategy 6: Increase ecosystem redundancy across the landscape.

- 6.1. Manage habitats over a range of sites and conditions.
- 6.2. Expand the boundaries of reserves to increase diversity.

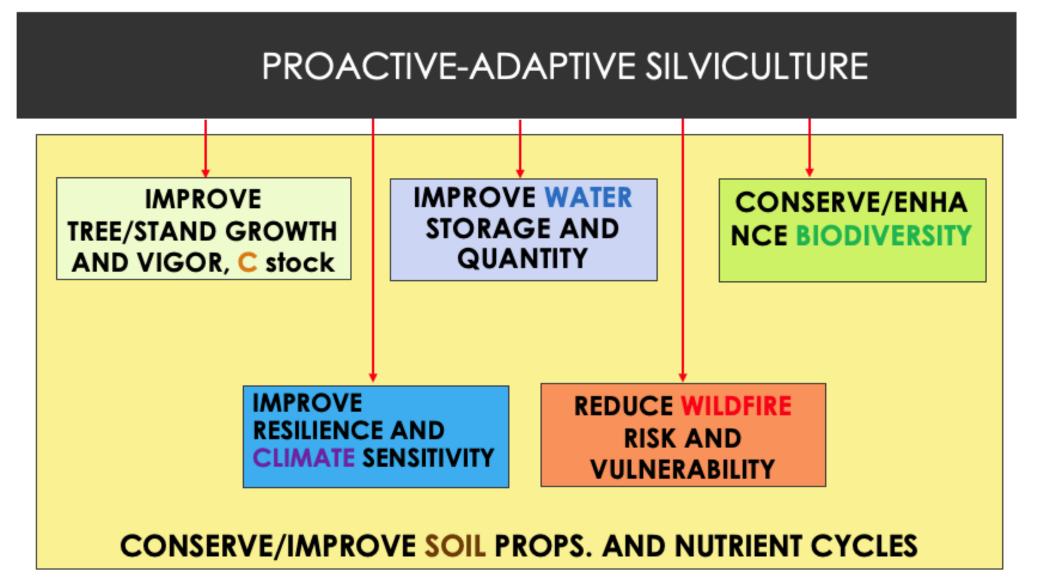
Strategy 7: Promote landscape connectivity.

- 7.1. Reduce landscape fragmentation.
- 7.2. Maintain and create habitat corridors through reforestation or restoration.

Strategy 8: Maintain and enhance genetic diversity.


- 8.1. Use seeds, germplasm, and other genetic material from across a greater geographic range.
- 8.2. Favor existing genotypes that are better adapted to future conditions.

Strategy 9: Facilitate community adjustments through species transitions.


- 9.1. Favor or restore native species that are expected to be adapted to future conditions.
- 9.2. Establish or encourage new mixes of native species.
- 9.3. Guide changes in species composition at early stages of stand development.
- 9.4. Protect future-adapted seedlings and saplings.
- 9.5. Disfavor species that are distinctly maladapted.
- 9.6. Manage for species and genotypes with wide moisture and temperature tolerances.
- 9.7. Introduce species that are expected to be adapted to future conditions.
- 9.8. Move at-risk species to locations that are expected to provide habitat.

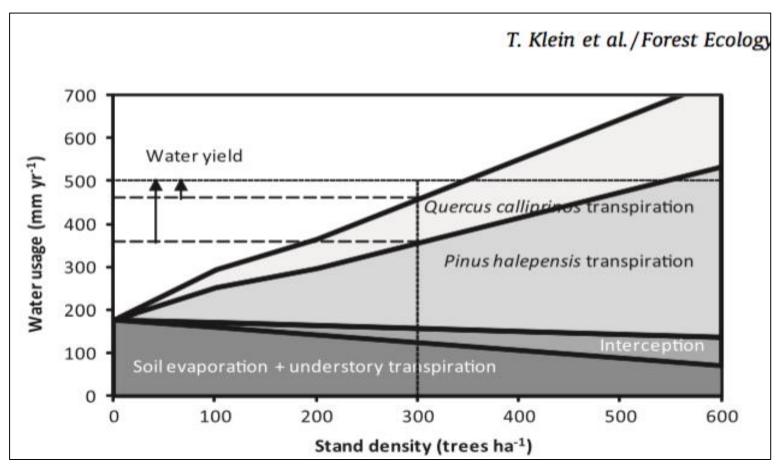
Strategy 10: Realign ecosystems after disturbance.

- 10.1. Promptly revegetate sites after disturbance.
- 10.2. Allow for areas of natural regeneration to test for future-adapted species.
- 10.3. Realign significantly disrupted ecosystems to meet expected future conditions.

De la selvicultura de productos a la selvicultura de procesos

S.A: hacia procesos y rasgos funcionales claves

- Necesidad de cuantificar los procesos de los ecosistemas: carbono, agua, fuego, resiliencia, biodiversidad,...
- De la selvicultura de productos a la selvicultura de procesos

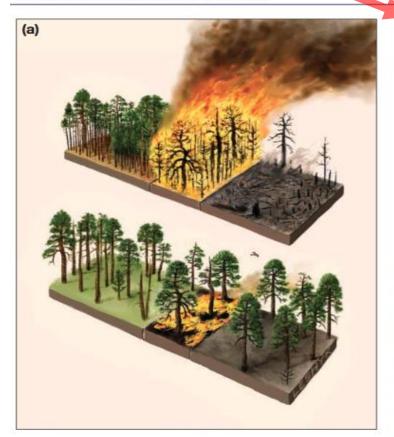


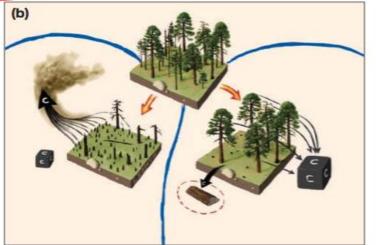
• Estrategia Forestal EU (2021): El papel multifuncional de los bosques, Secuestro C, Mejorar la resiliencia de los ecosistemas, Proteger y preservar la biodiversidad y otros servicios de los ecosistemas.

Selvicultura: Procesos y rasgos funcionales claves

Procesos hidrológicos:

- Estructura física
- Estructura biológica





Protection del Carbono y reducción riesgo incendio

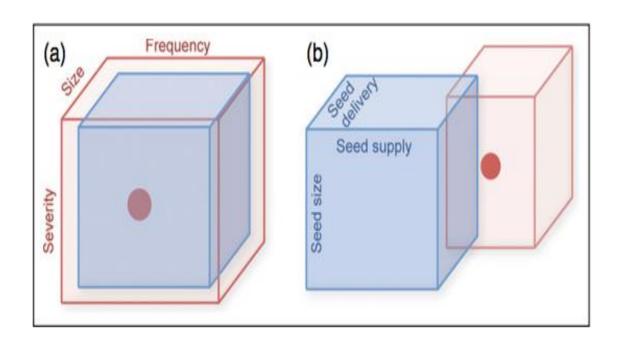

Carbon protection and fire risk reduction

Figure 1. (a) Two options for a given forest stand and the resultant tree survivorship following a wildfire event. (b) The carbon accounting consequences of two possible options for a given forest stand and the results following a wildfire event. The cubes represent the amount of carbon remaining in the ecosystem after wildfire.

Hurteau et al., 2008 (Front Ecol Environ, 6(9),493-498, doi:10.1890/070187)

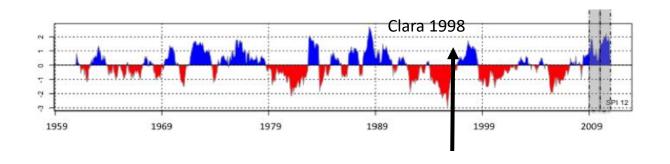

- Caja roja: características de los regímenes de perturbación con patrones de severidad, tamaño y frecuencia.
- Caja azul: rasgos que afectan la respuesta a las perturbaciones, como el tamaño, el suministro y la edad de madurez de la semilla

Table 1. Regeneration mechanisms of resilience to fire disturbance	, and their vulnerabilities to changing disturbance
characteristics	

Mechanism	Vulnerability to altered disturbance	Consequences
Seed supply	Increased fire frequency or severity	Reduced tree recruitment if fire intervals are less than those required for an adequate seed crop, or severe fires consume stored seed
Seed delivery	Increased fire size	Reduced or retarded tree regeneration if high-severity burned patch size exceeds seed dispersal distances
Seedbed	Increased fire severity	Altered canopy composition due to environmental filters on tree seedling establishment and growth

Resiliencia climática: Mejora de las relaciones arbol-clima

Tiempo	Tipo año	Parcela	Ancho anillo (cm)		
	SECO	Control Tratado	0.06 (a) 0.06 (a)		
Antes Clara	Control LLUVIOSO Tratado		0.12 (a) 0.07 (a)		
Dosnués	SECO	_ Control Tratado	0.04 (b)** 0.33 (a)**		
Después clara	LLUVIOSO	Control Tratado	0.06 (b)** 0.37 (a)**		
			0.07 (4)		

> dependencia en CONTROL de la P mensual a lo largo del año actual en cualquier temporada Rasgos funcionales asociados a procesos (por ej. mortalidad inducida por sequía)

Physiological traits (leaf)

Stomatal regulation

• Cuticular conductance

Physiological traits (common)Vulnerability to cavitation

• Maximum hydraulic conductance

Capacitance and water storage

• Cell membrane permeability

(aguaporin regulation)

Physiological traits (root)

Cortical lacunae formation

Root shrinkage/hydraulic isolation

• Soil-root hydraulic conductance

• Turgor loss point

 $(\Psi_{12}, \Psi_{50}, \Psi_{88})$

Choat et al. 2018. DOI: 10.1038/s41586-018-0240-x

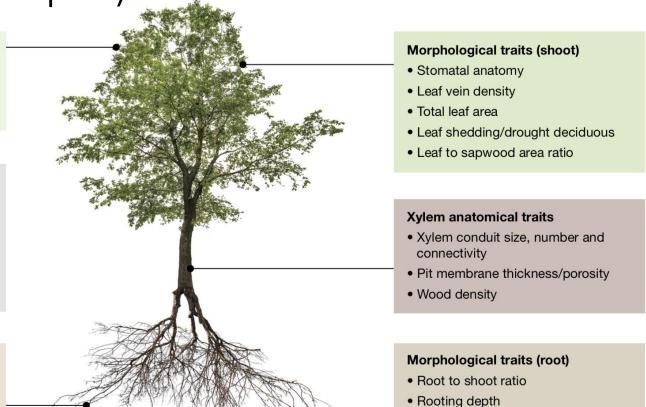


Fig. 3 | Tree hydraulic traits associated with drought-induced mortality.

Trees use a variety of interdependent and coordinated morphological, anatomical and physiological traits to mitigate water loss and the development of increasingly negative xylem sap pressures during drought. This includes tissue-specific traits that function in the unique microenvironment of roots, stems and leaves, as well as traits that are common among most tissue types in trees. Many structure–function

relationships exist between traits, for example, variation in xylem anatomical traits (pit membrane porosity, conduit size and connectivity) determine species and population-level vulnerability to cavitation. Note that this figure does not represent an exhaustive list of hydraulic traits relevant to the response of trees to drought and drought-induced mortality.

Fine root loss

El **objetivo fundamental** es la integración de diferentes grupos de investigación en S.A. al cambio climático, que contribuyan con <u>conocimientos</u>, <u>planteamientos</u>, <u>metodologías</u>, <u>sitios experimentales</u> activos y <u>resultados</u> al desarrollo de un marco analítico para una gestión forestal adaptativa generalizable a todo el territorio.

- Establecer una <u>red de sitios demostrativos</u> de gestión forestal adaptativa que incluya diferentes opciones de adaptación en una amplia representación de bosques españoles
- Armonizar <u>metodologías de seguimiento</u> para los indicadores más importantes (productividad, agua, clima, fuego, biodiversidad, etc.).
- Analizar comparativamente los <u>resultados</u> de la Red y aplicar <u>modelos</u> de procesos para generalizar <u>alternativas</u> <u>de gestión</u> para casos concretos.
- Identificar lagunas de conocimiento
- Intercambio de información y comunicación entre integrantes de la Red y transferencia de resultados a potenciales beneficiarios
- Comunicación y divulgación

SilvAdapt.net: Objetivos

SilvAdapt.net: Objetivos

SilvAdapt.net (Red española de Selvicultura adaptativa al cambio climático)

Impactos
Observados/

Previstos

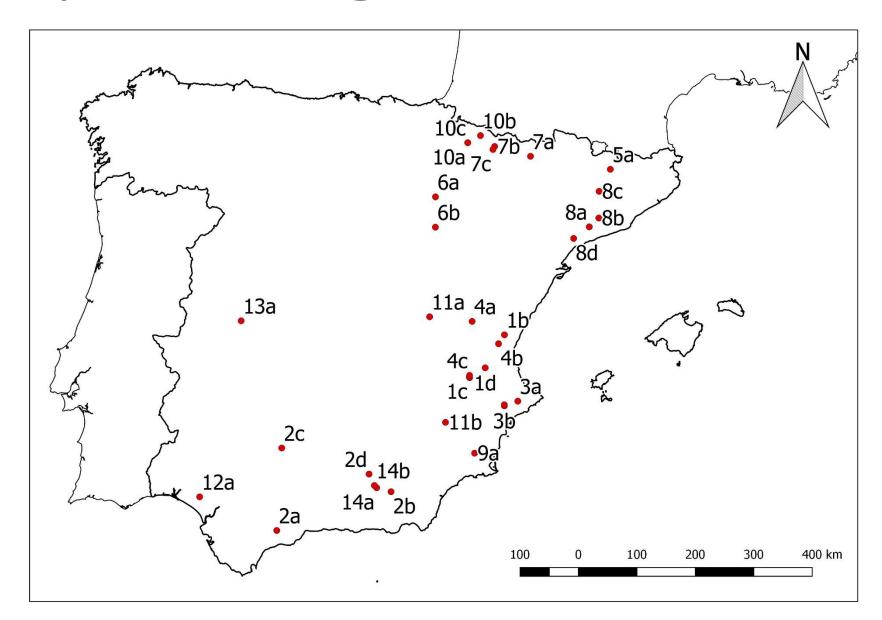
4

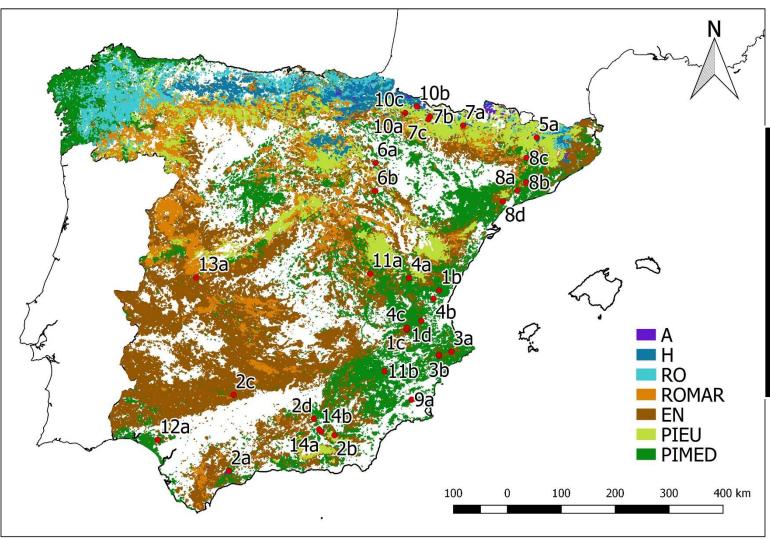
Objetivos de Gestión

Opciones de Adaptación:

- Resistencia
- Resiliencia
- Transición
- Sin tratamiento

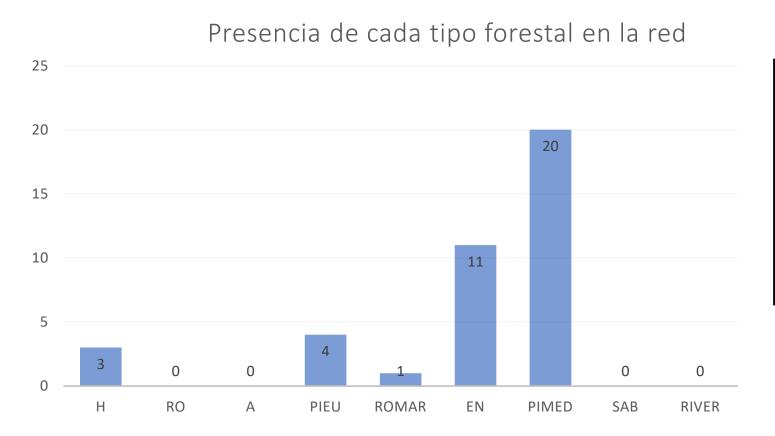
Definición y cuantificación en cada caso de los tratamientos según tipo de masa y condiciones ambientales (al vuelo y al suelo, regeneración, regulación espesura, distribución edades y spp, etc.). Caso de bosques/spp. singulares

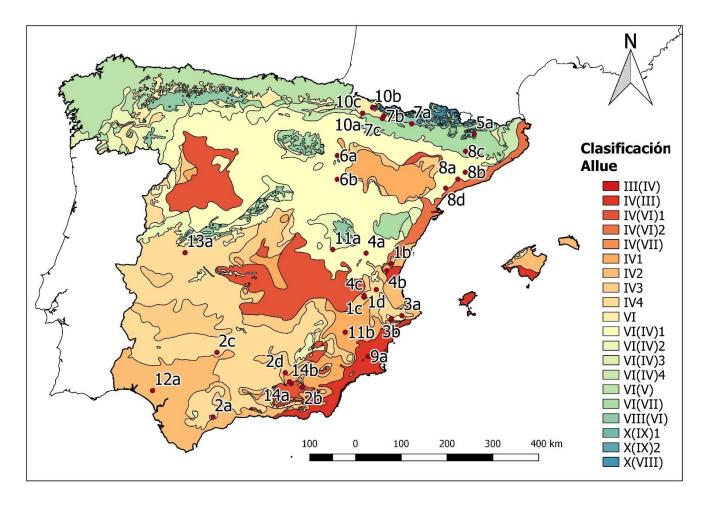

Evaluación y Seguimiento:


- Productividad (biomasa, BAI)
- Rasgos funcionales
- Sensibilidad al clima y perturbaciones
- Agua y suelo
- Composición spp/ biodiversidad
- Estado Fitosanitario

SilvAdapt.net: Integrantes

ID grupo	Entidad	Grupo	Responsable	Provincia
1	Universidad Politécnica de Valencia	Re-ForeST (UPV)	Antonio del Campo (IP)	Valencia
2	Universidad de Córdoba	Evaluación y Restauración de Sistemas Agrícolas y Forestales-RNM 360	Rafael Navarro	Córdoba
3	Universidad de Alicante	Grupo Gestión de Ecosistemas y Biodiversidad	Juan Bellot	Alicante
4	Centre d'Estudis Ambientals del Mediterrani (CEAM)	Investigación forestal	Alberto Vilagrosa	Alicante
5	Consejo Superior de Investigaciones Científicas (CSIC)	Grupo de Hidrología Superficial y Erosión	Pilar Llorens	Barcelona
6	Instituto Pirenaico de Ecología (CSIC)	Depto. de Biodiversidad y Restauración, grupo de Dendroecología	Jesús Camamero	Zaragoza
7	Instituto Pirenaico de Ecología (CSIC)	Hidrología ambiental.	David Regües	Zaragoza
8	Centro de la Propiedad Forestal	Área de Fomento de la Gestión Forestal Sostenible	Teresa Cervera	Barcelona
9	Centro de Edafología y Biología Aplicada del Segura (C.E.B.A.SCSIC)	Conservación de Suelos y Aguas y Manejo de Residuos Orgánicos	Víctor Castillo	Murcia
10	Universidad Pública de Navarra	Grupo de Ecología y Medio Ambiente	Juan Blanco	Navarra
11	Universidad de Castilla La Mancha (ETSIAM, Campus de Albacete)	Ecología Forestal y Limnología	Manuel Esteban Lucas Borja	Albacete
12	Universidad de Huelva	Análisis y Planificación del Medio Natural	Reyes Alejano	Huelva
13	Universidad de Extremadura	INDEHESA-UEX (Dpto. Biología vegetal, Ecología y Ciencias de la Tierra)	Gerardo Moreno	Cáceres
14	Junta de Andalucía	Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica	Francisco B. Navarro Reyes	Granada


SilvAdapt.net: Integrantes



- H: hayedos
- RO: robledales y mixtas de frondosas
- ROMAR: robledales marcescentes
- EN: encinares y alcornocales
- PIEU: P. sylvestris y uncinata
- PIMED: pinos mediterráneos
- Blanco: otras formaciones y agrícola

Distribución masas forestales medidas según tipos bosque

- A: abetales
- H: hayedos
- RO: robledales y mixtas de frondosas
- ROMAR: robledales marcescentes
- EN: encinares y alcornocales
- PIEU: P. sylvestris y uncinata
- PIMED: Pinos Mediterráneos
- SAB: sabinares
- RIVER: bosques de ribera

Tipo	Subtipo
Árido	III(IV)
Mediterráneo	IV(III)
	IV(VII)
	IV1
	IV2
	IV3
	IV4
	IV(VI)1
	IV(VI)2
Nemorales	VI(IV)1
	VI(IV)2
	VI(IV)3
	VI(IV)4
	VI(VII)
	VI(V)
	VI
OROBOREALOIDES	VIII(VI)
	X(VIII)
	X(IX)1
	X(IX)2

Zonificación del territorio en función de fitoclimas : 20 subtipos en nuestro país según Allué

Distribución masas forestales medidas según los subtipos fitoclimáticos

ALLUE	н	RO	Α	PIEU	ROMAR	EN	PIMED	SAB	RIVER
III(IV)									
IV(III)							2		
IV(VII)									
IV1						1	3		
IV2							1		
IV3						1	1		
IV4						3	3		
IV(VI)1						1	2		
IV(VI)2									
VI(IV)1						3	7		
VI(IV)2							1		
VI(IV)3									
VI(IV)4									
VI(VII)	1			1	1		1		
VI(V)									
VI									
VIII(VI)				1					
X(VIII)									
X(IX)1									
X(IX)2									

SilvAdapt.net: Selvicultura

- No gestión (en 100 % del total de sitios experimentales)
- Claras (en 16 % del total de sitios experimentales)
- Clareos (en 45 % del total de sitios experimentales)
- Resalveo (en 3% del total de sitios experimentales)

SilvAdapt.net: Selvicultura

Indicadores clave:

- Estructura forestal, crecimiento y supervivencia (dendrocronología, inventario...) 57 % de los sitios
- Relaciones bosque-agua (flujo de savia, contenido agua suelo, nivel piezométrico, caudales...) 71 % de los sitios
- Fisiología de las especies (conductancia estomática, eficiencia uso agua, flujo de savia...) >60 % de los sitios
- Ciclos de nutrientes (composición del agua traslocada, trampas en suelo...)
- Procesos en el suelo (actividad enzimática, intercambio gaseoso...)
- Riesgo y propagación de incendios (KDBI, área quemada)

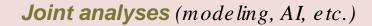
Single site approach

Observed/expected stressors

o Tomicus sp. attack, high fire risk, low soil water, etc.

Site-specific indicators

- Climate, sap flow, tree
 metrics, water potential, etc.
- → Site-oriented treatments


SilvAdapt.net approach

Broad set of stressors and impacts

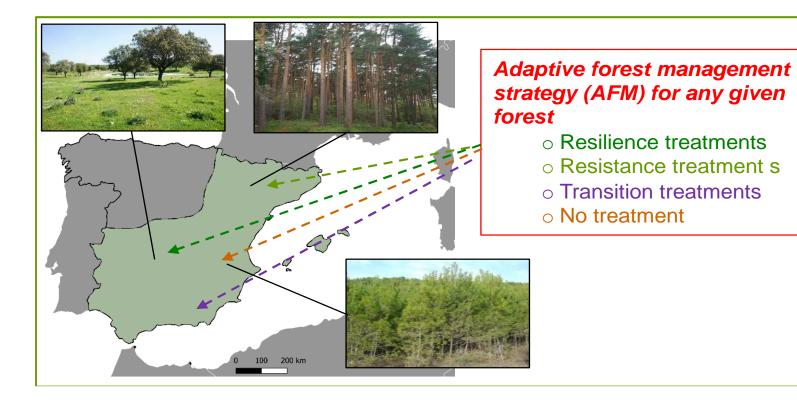
• Hydrologic unbalances, growth stagnation, fires (increased frequency and severity), extreme droughts, land use change, pests, diseases, etc.

Key adaptive traits and indicators

Carbon-related indicators, water
 cycle elements and tree-water
 relations, plant functional traits, etc.

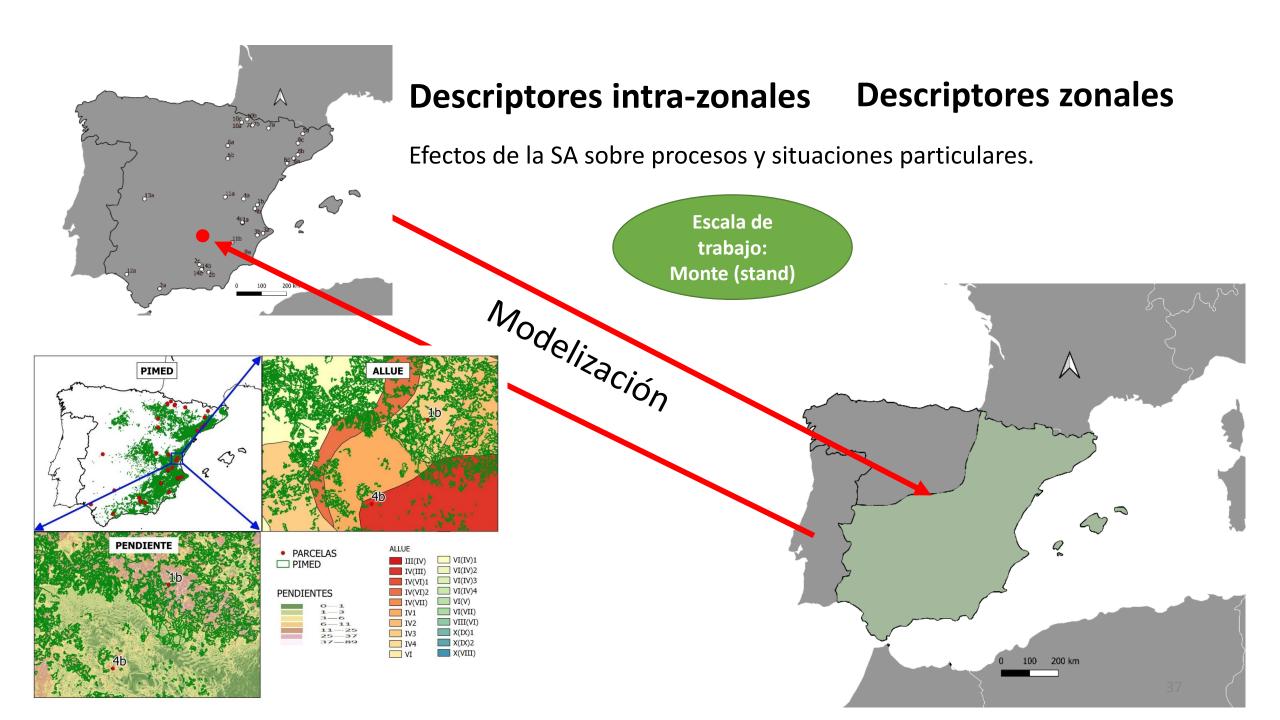
SilvAdapt.net approach

Broad set of stressors and impacts


• Hydrologic unbalances, growth stagnation, fires (increased frequency and severity), extreme droughts, land use change, pests, diseases, etc.

Key adaptive traits and indicators

 Carbon-related indicators, water cycle elements and tree-water relations, plant functional traits, etc.

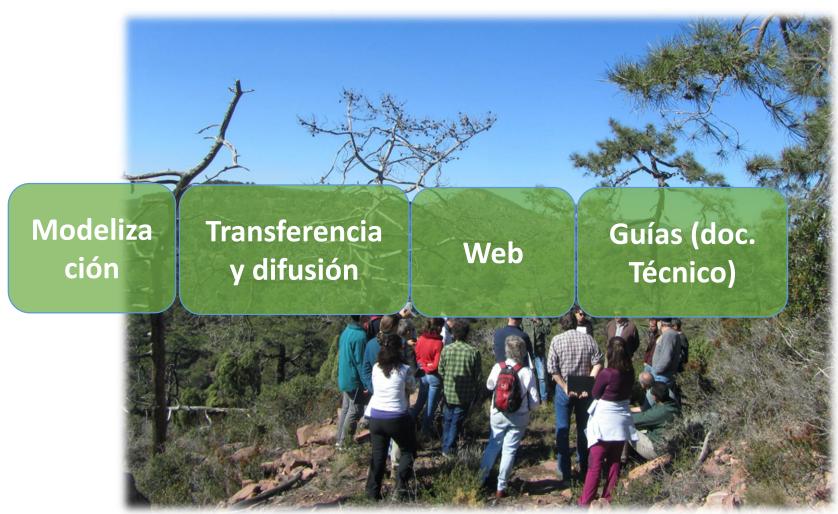

Joint analyses (modeling, AI, etc.)

SilvAdapt.net: Hitos

Salvar la variabilidad local intra-zonal de los sitios

SilvAdapt.net: Grupos de trabajo

Grupos de trabajo: temáticos y transversales


Relaciones bosque-agua

Resiliencia climática

Biodiversidad

Resiliencia frente al fuego

Stocks de carbono

GRUPOS DE TRABAJO: Al menos 1 líder (institución) para cada grupo + colaboradores

					<u> </u>				
ENTIDAD		TEMÁTICOS			TRANSVERSALES				
	Bosque- agua	Resiliencia Climática	Resist. fuego	Stocks C	Biodiversidad	Model.	Transf. y Difusión	Web	Guías
UPV-IIAMA									
UCO									
U. Alicante							a		
CEAM					2 8				
IDAEA-CSIC		THE PARTY NAMED IN	5		5400				
IPE-CSIC Gov. Aragón		a V							
IPE-CSIC				T.					
Centro Propiedad Forestal				P		B	- C		
CEBAS -CSIC									
UPN									
UCLM- ETSIAM									
UH					1 196				
INDEHESA-UEX									
IFAPA-J									

SilvAdapt.net: Hitos

- PRINCIPALES HITOS:

- Contribuciones científicas por temática clave
- Guía de selvicultura adaptiva. Documento técnico final del proyecto
 - Libro de texto (manual) de selvicultura adaptativa al cambio climático
- **Web** 100 % operativa
- Continuidad medio plazo
- Ampliar sitios/entidades
- Aumentar capacidad de auto-financiación

Gracias por su atención

La Red Española de Selvicultura Adaptativa al Cambio Climático (SilvAadpt.net) de referencia RED2018-102719-T, es un proyecto financiado por el ministerio de Ciencia e Innovación dentro de las Acciones de Dinamización "Redes de Investigación" Convocatoria 2018, Programa Estatal de Generación de Conocimiento y Fortalecimiento Científico y Tecnológico del Sistema de I+D+I, Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020.